8 research outputs found

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interruption of cardiopulmonary resuscitation (CPR) impairs the perfusion of the fibrillating heart, worsening the chance for successful defibrillation. Therefore ECG-analysis <it>during ongoing chest compression </it>could provide a considerable progress in comparison with standard analysis techniques working only during "hands-off" intervals.</p> <p>Methods</p> <p>For the reduction of CPR-related artifacts in ventricular fibrillation ECG we use a localized version of the <it>coherent line removal </it>algorithm developed by Sintes and Schutz. This method can be used for removal of periodic signals with sufficiently coupled harmonics, and can be adapted to specific situations by optimal choice of its parameters (e.g., the number of harmonics considered for analysis and reconstruction). Our testing was done with 14 different human ventricular fibrillation (VF) ECGs, whose fibrillation band lies in a frequency range of [1 Hz, 5 Hz]. The VF-ECGs were mixed with 12 different ECG-CPR-artifacts recorded in an animal experiment during asystole. The length of each of the ECG-data was chosen to be 20 sec, and testing was done for all 168 = 14 × 12 pairs of data. VF-to-CPR ratio was chosen as -20 dB, -15 dB, -10 dB, -5 dB, 0 dB, 5 dB and 10 dB. Here -20 dB corresponds to the highest level of CPR-artifacts.</p> <p>Results</p> <p>For non-optimized <it>coherent line removal </it>based on signals with a VF-to-CPR ratio of -20 dB, -15 dB, -10 dB, -5 dB and 0 dB, the signal-to-noise gains (SNR-gains) were 9.3 ± 2.4 dB, 9.4 ± 2.4 dB, 9.5 ± 2.5 dB, 9.3 ± 2.5 dB and 8.0 ± 2.7 (mean ± std, <it>n </it>= 168), respectively. Characteristically, an original VF-to-CPR ratio of -10 dB, corresponds to a variance ratio <it>var</it>(VF):<it>var</it>(CPR) = 1:10. An improvement by 9.5 dB results in a restored VF-to-CPR ratio of -0.5 dB, corresponding to a variance ratio <it>var</it>(VF):<it>var</it>(CPR) = 1:1.1, the variance of the CPR in the signal being reduced by a factor of 8.9.</p> <p>Discussion</p> <p>The <it>localized coherent line removal </it>algorithm uses the information of a single ECG channel. In contrast to multi-channel algorithms, no additional information such as thorax impedance, blood pressure, or pressure exerted on the sternum during CPR is required. Predictors of defibrillation success such as mean and median frequency of VF-ECGs containing CPR-artifacts are prone to being governed by the harmonics of the artifacts. Reduction of CPR-artifacts is therefore necessary for determining reliable values for estimators of defibrillation success.</p> <p>Conclusions</p> <p>The <it>localized coherent line removal </it>algorithm reduces CPR-artifacts in VF-ECG, but does not eliminate them. Our SNR-improvements are in the same range as offered by multichannel methods of Rheinberger et al., Husoy et al. and Aase et al. The latter two authors dealt with different ventricular rhythms (VF and VT), whereas here we dealt with VF, only. Additional developments are necessary before the algorithm can be tested in real CPR situations.</p

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Additional Value of 2-[18F]FDG PET/CT Comparing to MRI in Treatment Approach of Anal Cancer Patients

    No full text
    Accurate staging and treatment planning are imperative for precise management in Anal Cancer (ACa) patients. We aimed to evaluate the additive and prognostic value of pre-treatment 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) in the staging and management of ACa compared to magnetic resonance imaging (MRI). This retrospective study was conducted on 54 patients. Pre-treatment 2-[18F]FDG PET/CT studies and MRI reports were compared considering the primary tumor, pelvic lymph nodes, and metastatic lesions. The impact of 2-[18F]FDG PET/CT in the management and its prognostic value, using maximum standardized uptake value (SUVmax), were assessed. Discordant findings were found in 46.3% of patients (5 in T; 1 in T and N; 18 in N; and 1 in M stage). 2-[18F]FDG PET/CT resulted in up-staging in 9.26% and down-staging in 3.7% of patients. Perirectal lymph nodes were metabolically inactive in 12.9% of patients. Moreover, 2-[18F]FDG PET/CT resulted in management change in 24.1% of patients. Finally, SUVmax provided no prognostic value. 2-[18F]FDG PET/CT altered staging and management in a sizable number of patients in this study, and supports a need for a change in guidelines for it to be used as a routine complementary test in the initial management of ACa
    corecore